Schwere, Elektricität und Magnetismus:043
Vorlage:Bernhard Riemann - Schwere, Elektricität und Magnetismus Vorlage:PageDef2
<section begin=t1 />welche die auf dem Oberflächen-Element des anziehenden Körpers nach seinem Innern zu errichtete Normale mit den positiven Coordinatenaxen einschliesst, so lauten die Resultate der Transformation:
Vorlage:Idt2Diese Gleichungen sind gültig, der angezogene Punkt mag ausserhalb oder innerhalb der anziehenden Masse liegen. Denn für beide Fälle ist die Zulässigkeit der Transformation nachgewiesen. Die einzige Bedingung, die erfüllt sein muss, besteht darin, dass die Dichtigkeit der anziehenden Masse im Innern des von ihr erfüllten Raumes eine stetige Function des Ortes sei.
<section end=t1 />
<section begin=t2 />
Vorlage:Idt2Nun ist es leicht, die zweiten partiellen Derivirten in einer Form herzustellen, die bestimmte endliche Werthe liefert, der angezogene Punkt mag ausserhalb oder innerhalb der anziehenden Masse liegen. Man erhält
Diese Ausdrücke gehen durch Differentiation aus den Gleichungen (2) des vorigen Paragraphen hervor. Auf der rechten Seite ist die Differentiation unter dem Integralzeichen vorgenommen. Das darf geschehen, weil die Integrale, die daraus hervorgehen, durchaus<section end=t2 />