Schwere, Elektricität und Magnetismus:021
Vorlage:Bernhard Riemann - Schwere, Elektricität und Magnetismus Vorlage:PageDef2
<section begin=t1 />
Vorlage:Idt2Die dreifache Integration erstreckt sich auf alle Werthen-Combinationen , für welche
ist.
<section end=t1 />
<section begin=t2 />
Vorlage:Idt2Wir wollen der Einfachheit wegen und setzen. In dem angezogenen Punkte soll also die Masseneinheit sich befinden, und das Maass der Kraft ist so gewählt, dass zwei Masseneinheiten in der Einheit der Entfernung sich mit der Einheit der Kraft anziehen.
Vorlage:Idt2Sind die anziehenden Massen in einzelnen getrennt liegenden Punkten concentrirt, so hat man für die Componenten der auf den Punkt ausgeübten Kraft die Ausdrücke:
Das Zeichen ist so zu verstehen, dass der dahinter stehende Ausdruck der Reihe nach für jeden einzelnen anziehenden Massenpunkt gebildet und dann die Summirung der sämmtlichen entstehenden Werthe vorgenommen werden soll. Die Gleichungen (1) zeigen, dass Functionen von den Coordinaten des Punktes sind, in welchem die angezogene Masse sich befindet. Lagrange hat bemerkt, dass diese Functionen sich ausdrücken lassen als die partiellen Derivirten einer einzigen Function von . Es ist nemlich
<section end=t2 />